Fixing colloidal motions at water/air interface with micrometer scale resolution.
نویسندگان
چکیده
Fast colloidal motions driven by surface tension gradient are created in a thin water layer. Unlike using solid boundaries to limit the colloidal flow, our work relaxes this condition by directly placing bulk fluid next to an open air environment. When the colloidal flow along the air/water interface is interfered with stationary objects, repetitive semicircular motions, that is, micro eddy, are frequently observed in domains as small as 2 μm. We assign the capillary convection between the liquid next to the air and that from the bulk as the driving force for the observed motions. Relationships among the maximum speed, temperature gradient, and thickness of the liquid layer are experimentally investigated and numerically analyzed. Our results could inspire future designs of micromechanical motors or fluidic mixing in a miniature device.
منابع مشابه
Two-particle microrheology of quasi-2D viscous systems.
We study the spatially correlated motions of colloidal particles in a quasi-2D system (human serum albumin protein molecules at an air-water interface) for different surface viscosities eta s. We observe a transition in the behavior of the correlated motion, from 2D interface dominated at high eta s to bulk fluid dependent at low eta s. The correlated motions can be scaled onto a master curve w...
متن کاملLateral capillary interactions between colloids beneath an oil-water interface that are driven by out-of-plane electrostatic double-layer interactions.
We study the lateral capillary interactions between colloids beneath an oil-water interface that lead to closely packed two-dimensional self-assembled colloidal crystals. These capillary forces are caused by the overlap of deformed interfaces above colloids on a solid substrate. The interface deformation is due to the electrostatic disjoining pressure between the charged particles and the charg...
متن کاملSynthesis of Copper Hydroxide Nitrate (Cu2(OH)3NO3) Micro-Sheets by Plasma Electrolysis of Cu(NO3)2 Aqueous Solution in Atmospheric Air
In the present paper, using a cathodic pin-to-solution electrical discharge electrolysis setup, interaction of the atmospheric air plasma with aqueous solution of copper nitrate and its possibility for synthesis of nano-materials is investigated. An AC (50 Hz) high-voltage power supply (5 kV) with rectified current is used for electrical discharge of the air between a metal pin and the solution...
متن کاملPredicting the phase diagram of two-dimensional colloidal systems with long-range interactions.
The phase diagram of a two-dimensional model system for colloidal particles at the air-water interface was determined using Monte Carlo computer simulations in the isothermic-isobaric ensemble. The micrometer-range binary colloidal interaction has been modeled by hard disklike particles interacting via a secondary minimum followed by a weaker longer-range repulsive maximum, both of the order of...
متن کاملFabrication of planar colloidal clusters with template-assisted interfacial assembly.
The synthesis of nanoparticle clusters, also referred to as colloidal clusters or colloidal molecules, is being studied intensively as a model system for small molecule interactions as well as for the directed self-assembly of advanced materials. This paper describes a technique for the interfacial assembly of planar colloidal clusters using a combination of top-down lithographic surface modifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 117 9 شماره
صفحات -
تاریخ انتشار 2013